Dateline Mars: The Latest Scoop

The Phoenix Mars Lander, under the control the UA Lunar and Planetary Lab, has been a busy little robot lab lately. Over the last few days, the robot arm has been working on its scooping technique, uncovering some white material which could be ice, could be salt, or could be some new freaky Martian cocaine. (OK, that last one is unlikely.) Meanwhile, the camera continues to snap photos amidst some minor technical difficulties.

The details from the latest release from the LPL:

Third Scoop is a Keeper for NASA's Phoenix Mars Lander

Two practice rounds of digging and dumping the clumpy soil at the Martian arctic

site this week gave scientists and engineers gathered at The University of

Arizona confidence to begin using Phoenix's Robotic Arm to deliver soil samples

to instruments on the lander deck.

Those samples will not be collected before Thursday. Following Wednesday's

briefing on the mission, the Phoenix team learned that NASA's Odyssey orbiter,

which relays Phoenix data to and from Earth, had entered a "safe mode,"

preventing Wednesday's (or Sol 10) instructions from reaching the lander.

Instead, Phoenix will complete a sequence of commands that are already stored on

board. That sequence includes instructions for the lander to continue taking

images required to assemble a full-color 360-degree high-resolution panorama.

Odyssey mission managers are doing a check out of the orbiter to determine what

triggered the safe mode. During safe mode, the spacecraft turns off

non-essential operations and waits for instructions from Earth. In the

meantime, the Phoenix team has been directed to issue commands to the lander

and receive data through Mars Reconnaissance Orbiter (MRO). While Phoenix has

been primarily utilizing Odyssey for relay services since MRO's UHF radio

unexpectedly powered off during a relay pass on Sol 2, the radio has been

exercised repeatedly over the past week and appears to be operating well.

The two practice digs have already enticed scientists about some bright material

in the soil just beneath the surface.

"Two scoops into the soil we see there's a white layer becoming visible in the

wall of the trench," said Carol Stoker of NASA Ames Research Center, Moffett

Field, Calif., a member of the Phoenix science team.

Phoenix Principal Investigator Peter Smith said, "We've had an impassioned

discussion of whether that may be salts or ice or some other material even more


Concentrations of salts can be indicators of formerly wet conditions. One goal

for the Phoenix mission is to determine whether the ice beneath the surface of

far-northern Mars ever thaws during long-term climate cycles.

The location chosen for the sample is adjacent to the hole dug by the two

practice scoops. The team plans to command the arm to deliver the sample to the

lander's Thermal and Evolved-Gas Analyzer (TEGA), after it first receives images

to confirm that the scoop holds collected soil ready for delivery.

"The arm has been performing flawlessly," said Ashitey Trebi-Ollennu of NASA's

Jet Propulsion Laboratory, senior robotics engineer on the Phoenix Robotic Arm

team. The arm made daring, Tai Chi or Yoga-like moves to position the Robotic

Arm Camera to take pictures underneath the lander, and did its two test digs

"magnificently," he said.

Phoenix is the first mission to dig into Mars with a robotic arm since the

Viking landers in the 1970s.

"We have only dug to a depth of an inch or two, so we know there are challenges

ahead," Trebi-Ollennu added. "But we are confident that we'll get a good amount

of material to deliver to TEGA.?

In addition to the bright material seen where the arm collected test samples, a

layer of hard, light-toned substrate has been seen in images taken underneath

the lander by the Robotic Arm Camera.

"We think the lander is sitting on a layer of this white material that possibly

extends beyond, out into our work area," said Uwe Keller, Robotic Arm Camera

lead scientist from the Max Planck Institute for Solar System Research,

Katlenburg-Lindau, Germany.

Phoenix's telltale, which is part of the Canadian Space Agency's meteorological

package and the highest part of the lander, has proved to be very sensitive to

Martian winds, said Haraldur Gunnlaugsson of the University of Aarhus, Denmark,

which provided the device.

"A storm on Mars is a gentle hand movement on Earth," Gunnlaugsson said. Surface

Stereo Imager images of the telltale show a diurnal pattern to Martian winds.

Winds come from the south in the morning, blow in from the north by mid-day,

from the west in the afternoon, and again from the south by the end of the day.

Knowledge of wind direction and speed is important to prevent possible

contamination of samples during digging.

The Phoenix mission is led by Smith at the University of Arizona with project

management at JPL and development partnership at Lockheed Martin, Denver.

International contributions come from the Canadian Space Agency; the University

of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus, Denmark;

Max Planck Institute, Germany; and the Finnish Meteorological Institute.